Decentralized Diagnosis of Discrete Event Systems Using an Arborescent Architecture

A. Khoumsi

1Department of Electrical and Computer Engineering
University of Sherbrooke, Canada

DX Workshop, September 26-29, 2017
Outline

1. Introduction
 - Discrete event systems (DES)
 - Diagnosis

2. Decentralized diagnosis of DES
 - Principle
 - Basic decentralized diagnosers
 - Inference-based diagnosis

3. Arborescent architecture
 - Principle of diagnosis decomposition
 - Diagnosis tree
 - Example

4. Conclusion
 - Contribution
 - Future work
Discrete event systems
- described by possible sequences of discrete events
- modeled by finite state automata
Basics of diagnosis

Input
- **Plant**: DES with its *desired* and *undesired* behaviors
- **Specification**: *desired* part of the plant

```
1 --a--> 2 --b--> 3
    \sigma/    \sigma/  
     4        5
```

Objective: to detect *undesired* behaviors of the Plant
- detection must be done in a *bounded* future

Approach: Use of a diagnoser that
- Observes *partially* the behavior of the plant
- Tries to determine whether the plant is in its *desired* or *undesired* part
Decision computation, languages \mathcal{F} and \mathcal{H}

The language of the plant is split into \mathcal{F} and \mathcal{H}:
- \mathcal{F} contains the undesired traces of the plant
- \mathcal{H} contains the desired traces of the plant

Example: $\mathcal{F} = \{ab\sigma\}$ and $\mathcal{H} = \{a\sigma, ab\}$ for:

```
1 → a → 2 → b → 3
σ ↓ 4
```

The diagnoser observes the evolution of the plant and, after each observation, generates a decision 1, 0 or ϕ:
- 1: the diagnoser is certain that the plant is in \mathcal{F}
- 0: the diagnoser is certain that the plant is in \mathcal{H}
- ϕ: the diagnoser is unsure whether the plant is in \mathcal{F} or \mathcal{H}
Plant: diagnosed by local diagnosers and a fusion module

A local diagnoser D_i, for each site i:
- makes local observations of events
- makes local decisions $(1, 0, \phi)$

A fusion module computes:
- a global decision $(1, 0, \phi) = \text{combination of all local decisions}$
F-diagnoser

Local decision of each D_i is:
- 1, when it is certain that the plant is in F;
- 0, otherwise.

Global decision is disjunctive, i.e.:
- global decision $= \bigvee$ of all local decisions

Intuition: the plant is determined as nonfaulty when none of the local diagnosers is certain of faultiness

Condition of applicability of F-diagnoser
- $\bigcap_{i \in I} P_i^{-1} P_i(H) \cap F = \emptyset$
Local decision of each D_i is:
- 0, when it is certain that the plant is in \mathcal{H};
- 1, otherwise.

Global decision is conjunctive, i.e.:
- global decision $= \bigwedge$ of all local decisions

Intuition: the plant is determined as faulty when none of the local diagnosers is certain of non-faultiness

Condition of applicability of NF-diagnoser
- $\bigcap_{i \in I} P_i^{-1} P_i(\mathcal{F}) \cap \mathcal{H} = \emptyset$
Principle of inference-based diagnosis

Local decisions:
- Each local diagnoser D_i computes:
 - a local decision c_i
 - an ambiguity level n_i
- Computation of c_i and n_i is:
 - quite complex and nonintuitive
 - based on iterative languages $\mathcal{F}[k]$ and $\mathcal{H}[k]$

Global decision =
- local decision with the smallest ambiguity level
Applicability of inference-based control

Inf_N^F-diagnosis denotes:
- Inference-based diagnosis s.t. N is the maximum ambiguity level which is computed

Languages $\mathcal{F}[k]$ and $\mathcal{H}[k]$:
- Basis:
 - $\mathcal{F}[0] = \mathcal{F}$
 - $\mathcal{H}[0] = \mathcal{H}$
- Inductive step: for $k \geq 0$
 - $\mathcal{F}[k + 1] = \mathcal{F}[k] \cap \bigcap_{i \in I} P_i^{-1} P_i(\mathcal{H}[k])$
 - $\mathcal{H}[k + 1] = \mathcal{H}[k] \cap \bigcap_{i \in I} P_i^{-1} P_i(\mathcal{F}[k])$

Let \mathcal{F}^m consisting of the traces of \mathcal{F} that remain undesired even if we remove their last m events

Condition of applicability of Inf_N^F-diagnosis
- $\exists m \geq 0$ s.t. $\mathcal{F}^m \cap \mathcal{F}[N + 1] = \emptyset$
Generality of inference-based diagnosis

- Inf_{N+1}-F-diagnosis is more general (i.e. applicable to more languages) than Inf_N-F-diagnosis
- Inf_0-F-diagnosis is the basic (and most restrictive) inference-based diagnosis
Step 1

Diagnosis of
(F, H)

Diagnosis decision

Step 2k+2

Diagnosis of
(F[2k+1], H[2k])

Diagnosis decision

Diagnosis of
(F[2k+1] \ F[1], H)

Diagnosis decision

NF-diagnosis of
(F[2k+1], H[2k] \ H[2k+2])

Diagnosis of
(F[2k+1], H[2k+2])

Step 2k+3

Diagnosis of
(F[2k+1], H[2k+2])

Diagnosis decision

F-diagnosis of
(F[2k+1] \ F[2k+3], H[2k+2])

Diagnosis of
(F[2k+3], H[2k+2])

Diagnosis decision

A. Khoumsi

Arborescent Decentralized Diagnosis of DES
Arborescent diagnosis of \((\mathcal{F}, \mathcal{H})\)

- F-diagnosis of \((F \setminus F[1], H)\)
- NF-diagnosis of \((F[1], H \setminus H[2])\)
- F-diagnosis of \((F[1] \setminus F[3], H[2])\)
- NF-diagnosis of \((F[3], H[2] \setminus H[4])\)
- ...
Example of arborescent diagnosis

Diagnosis of \((F, H)\)

- **F-diagnosis of** \((F \setminus F[1], H)\)
- **NF-diagnosis of** \((F[1], H \setminus H[2])\)
- **Inf\(_0\)-F-diagnosis of** \((F[1], H[2])\)

Diagnosis of \((F[1], H)\)
Example of arborescent diagnosis

<table>
<thead>
<tr>
<th>λ</th>
<th>$P_1(\lambda)$</th>
<th>$P_2(\lambda)$</th>
<th>$X_1 \lor X_2 = X$</th>
<th>$Y_1 \land Y_2 = Y$</th>
<th>$Z_1 \diamond Z_2 = Z$</th>
<th>$X \lor (Y \land Z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda \in H$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c^*</td>
<td>c^*</td>
<td>c^*</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$c^* ab'$</td>
<td>$c^* a$</td>
<td>$c^* b'$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$c^* ab' c^+$</td>
<td>$c^* ac^+$</td>
<td>$c^* b' c^+$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$c^* ba'$</td>
<td>$c^* a'$</td>
<td>$c^* b$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$c^* ba' c^+$</td>
<td>$c^* a' c^+$</td>
<td>$c^* bc^+$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$c^* dac^+$</td>
<td>$c^* dac^+$</td>
<td>$c^* dc^+$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$c^* dbc^+$</td>
<td>$c^* dc^+$</td>
<td>$c^* dbc^+$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$c^* a$</td>
<td>$c^* a$</td>
<td>c^*</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$c^* b$</td>
<td>c^*</td>
<td>$c^* b$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$c^* d$</td>
<td>$c^* d$</td>
<td>$c^* d$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$c^* da$</td>
<td>$c^* da$</td>
<td>$c^* d$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$c^* db$</td>
<td>$c^* d$</td>
<td>$c^* db$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\lambda \in F \setminus F^1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c^* af$</td>
<td>$c^* a$</td>
<td>c^*</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$c^* bf$</td>
<td>c^*</td>
<td>$c^* b$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$c^* df$</td>
<td>$c^* d$</td>
<td>$c^* d$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$c^* daf$</td>
<td>$c^* da$</td>
<td>$c^* d$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$c^* dbf$</td>
<td>$c^* d$</td>
<td>$c^* db$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\lambda \in F^1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c^* afc^+$</td>
<td>$c^* ac^+$</td>
<td>c^+</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$c^* bfc^+$</td>
<td>c^+</td>
<td>$c^* bc^+$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$c^* dfc^+$</td>
<td>$c^* dc^+$</td>
<td>$c^* dc^+$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$c^* da$db'$</td>
<td>$c^* da$</td>
<td>$c^* db'$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$c^* daf$</td>
<td>$c^* da$</td>
<td>$c^* db$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$c^* dbf$</td>
<td>$c^* d$</td>
<td>$c^* db$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$c^* afc$</td>
<td>$c^* ac^+$</td>
<td>c^+</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$c^* bfc$</td>
<td>c^*</td>
<td>$c^* bc^+$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$c^* dfc$</td>
<td>$c^* dc^+$</td>
<td>$c^* dc^+$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$c^* da$db'$</td>
<td>$c^* da$</td>
<td>$c^* db'$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$c^* daf$</td>
<td>$c^* da$</td>
<td>$c^* db$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$c^* dbf$</td>
<td>$c^* d$</td>
<td>$c^* db$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$c^* afc$</td>
<td>$c^* ac^+$</td>
<td>c^+</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$c^* bfc$</td>
<td>c^*</td>
<td>$c^* bc^+$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$c^* dfc$</td>
<td>$c^* dc^+$</td>
<td>$c^* dc^+$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$c^* da$db'$</td>
<td>$c^* da$</td>
<td>$c^* db'$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$c^* daf$</td>
<td>$c^* da$</td>
<td>$c^* db$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$c^* dbf$</td>
<td>$c^* d$</td>
<td>$c^* db$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

A. Khoumsi

Arborescent Decentralized Diagnosis of DES 15/17
Contribution: We show that:

- Inference-based diagnosis \equiv arborescent combination of basic diagnoses: F-diagnosers, NF-diagnosers, and 1 Inf_0-F-diagnosis
Future work:

- Study arborescent diagnosis when inference-based diagnosis is unapplicable (in progress)
- Apply arborescent diagnosis to real-life applications
- Adapt arborescent diagnosis to prognosis